SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

Course Outline:	DATA BASE MANAGEMENT I		
Code No.:	EDP215-5		
Program:	COMPUTER PROGRAMMER		
Semester:	FOUR		
Date:	JANUARY, 1992		
Previous Outline Dated:	JANUARY, 1991		
Author:	DENNIS OCHOSKI		
	New:	Revision:	Х
APPROVED: Dean, 1	Business & Hospitality	Date	

DATA BASE MANAGEMENT I

TIME:

Five periods per week for one semester

TEXTS:

1. <u>Database Processing: Fundamentals - Design</u> -Implementation by David Kroenke, 3rd edition

2. Learning SQL - Wellesley Software

PURPOSE: This is an introductory course in database management systems and database design.

The course begins with a study of the necessary terminology and concepts to gain an appreciation of what a database/database management system is. Database design skills are developed by defining and creating, object diagrams, logical relationships among data, schemas, and sub-schemas using relational Bachman diagrams.

Practical skills are developed through the study and use of Sybase, a relational database management system. A number of case studies will be used to illustrate the analysis, design, and implementation of a database system.

STUDENT EVALUATION:

The student's final grade will consist of the following components:

Tests	(3	9	20%)				60%	5
Sybase	As	si	gnments	(4	9	10%)	40%	5

100%

GRADING:

90	-	100%
80	-	89%
70	-	798
60	-	69%
0	-	59%
	90 80 70 60 0	90 - 80 - 70 - 60 - 0 -

NOTE: There will be NO re-writes in this course due to poor performance.

-2-

DATA BASE MANAGEMENT I _____

PART A:

The following modules pertain specifically to the theoretical concepts discussed in the course.

Module 1: Introduction to database (Chapters 1 and 2)

Objectives:

- When this module is completed the student should be able to:
- distinguish database processing from file 1. processing.
- understand the advantages and disadvantages of 2. database processing.
- 3. identify and describe the functions of a database management system.
- identify the role that various components of a 4. database system play.
- 5. define the terms schema, sub-schema, and internal view.

DATA BASE MANAGEMENT I _____

Module 2: Database structures and design. (chapters 4 and 6)

Objectives:

When this module is completed the student should be able to:

- distinguish among trees, simple networks and 1. complex networks.
- 2. understand the difference between flat files and nonflat files.
- 3. develop object diagrams based upon a user's work environment and processing requirements.
- 4. understand the complexities of database design.
- 5. understand the inputs, outputs, and processes for both logical and physical database design.
- 6. understand the process for database design and implementation.

DATA BASE MANAGEMENT I

Module 3: The Relational Model (chapter 5)

Objectives:

When this module is completed the student should be able to:

- 1. explain relational terminology
- understand and apply the rules for composing relations
- 3. understand how trees, simple networks and complex networks are represented in the relational model
- understand the concept of normalization and apply normal forms to database design in the relational model
- Module 4: Physical Structures and the CODASYL MODEL (Appendix B and Chapter 13)

Objectives:

When this module is completed the student should be able to:

- understand physical structures such as sequential lists, linked lists, and inverted lists
- understand how trees, simple networks and complex networks can be represented using linked lists and inverted lists
- understand how secondary unique and non-unique keys can be represented using linked lists and inverted lists
- 4. understand the nature of database processing using the CODASYL model
- 5. represent trees, simple networks, and complex networks with the CODASYL model
- 6. show how trees, simple networks, and complex networks are represented in the hierarchical model

-5-

DATA BASE MANAGEMENT I

EDP 215

Module 5: Database Administration (chapter 7)

Objectives:

When this module is completed the student should be able to:

- 1. understand the importance of database administration.
- define the DBA's role in the management of data activity.
- 3. define DBA personnel and placement within an organization.

PART 'B': The following topics pertain specifically to the Sybase Data Base Management System (a relational system). These will be discussed concurrently with the theoretical concepts in Part "A".

MODULE 1: Sybase Relational Database Management System

Objectives: When this module is completed, the student should be able to:

- 1. understand and apply the criteria to create a Sybase database
- understand the concepts of unions, differences, intersections, selections, and joins
- understand and use SQL (structured Query Language) to make queries, generate reports and update a Sybase relational database.

-6-